
Complex Variables
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Complex numbers are really two numbers packaged into one entity (much 
like matrices).  The two “numbers” are the real and imaginary portions of 
the complex number:
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We may plot complex numbers in a complex plane: the horizontal axis 
corresponds to the real part and the vertical axis corresponds to the 
imaginary part.
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Often, we wish to use polar coordinates to specify the complex number.  
Instead of horizontal x and vertical y, we have radius r and angle q.
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The best way to express a complex number in polar coordinates is to use 
Euler’s identity:
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We also have
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A summary of the complex relationships is on the following slide.
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The magnitude of a complex number is the square-root of the sum of the 
squares of the real and imaginary parts:
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If we set the magnitude of a complex number equal to a constant, we have
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or,
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This is the equation of a circle, centered at the origin, of radius c.
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Suppose we wish to find the region corresponding to
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This would be a disk, centered at the origin, of radius c.
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Suppose we wish to find the region corresponding to
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This would be a disk, centered at z0, of radius c.
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Functions of Complex Variables

Since z is a complex number, w will be a complex number.  Since z has real 
and imaginary parts, w will have real and imaginary parts.

Suppose we had a function of a complex variable, say
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The standard notation for the real and imaginary parts of z are x and y
respectively.

The standard notation for the real and imaginary parts of w are u and v
respectively.
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Both u and v are functions of x and y.
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So a complex function of one complex variable is really two real functions of 
two real variables.
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Exercise: Find u(x,y) and v(x,y) for each of the following complex functions:
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Continuity of Complex 
Functions

In order to perform operations such as differentiation and integration of 
complex functions, we must be able to verify of the complex function is 
continuous.
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A complex function

is said to be continuous at a point z0 if as z approaches z0 (from any 
direction) then f(z) can be made arbitrarily close to f(z0).
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for some d such that

A more mathematical definition of continuity would be for any , we can 
make
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Since we are dealing with complex numbers, the geometric interpretation of 
this statement is different from that of real numbers.
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The region |z-z0| < d defines a disk in the complex plane of radius d centered 
about z0.
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So, if we wish |f(z)-f(z0)| <  we must find a d to make this so.
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